Whittaker Modules for Classical Lie Superalgebras

نویسندگان

چکیده

We classify simple Whittaker modules for classical Lie superalgebras in terms of their parabolic decompositions. establish a type Miličić–Soergel equivalence category and Harish–Chandra bimodules. For I, we reduce the problem composition factors standard to that Verma BGG categories $${\mathcal {O}}$$ . As consequence, series over general linear $$\mathfrak {gl}(m|n)$$ ortho-symplectic {osp}(2|2n)$$ can be computed via Kazhdan–Lusztig combinatorics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Whittaker Modules for Graded Lie Algebras

In this paper, we study Whittaker modules for graded Lie algebras. We define Whittaker modules for a class of graded Lie algebras and obtain a one to one correspondence between the set of isomorphic classes of Whittaker modules and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra. As a consequence of this, we obtain a c...

متن کامل

Parabolic category O for classical Lie superalgebras

We compare properties of (the parabolic version of) the BGG category O for semi-simple Lie algebras with those for classical (not necessarily simple) Lie superalgebras.

متن کامل

Whittaker Modules for a Lie Algebra of Block Type

In this paper, we study Whittaker modules for a Lie algebras of Block type. We define Whittaker modules and under some conditions, obtain a one to one correspondence between the set of isomorphic classes of Whittaker modules over this algebra and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra.

متن کامل

Grothendieck Rings of Basic Classical Lie Superalgebras

The Grothendieck rings of finite dimensional representations of the basic classical Lie superalgebras are explicitly described in terms of the corresponding generalised root systems. We show that they can be interpreted as the subrings in the weight group rings invariant under the action of certain groupoids, which we call Weyl groupoids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-04159-y